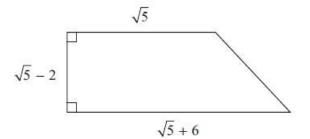


Countdown to your final Maths exam ... Part 2 (2019)

"WORKING ABOVE"

	Marks	Actual	
Q1. Change the subject/Simultaneous equations	6		
Q2. Calculate with surds	3		
Q3. Change the subject	4		
Q4. Collect like terms, factorise, expand & simplify	7		
Q5. Surds	5		
Q6. Solve ratio and surd problem	3		
Q7. Change the subject	3		
Q8. Rationalise the denominator	3		
Q9. Rationalise the denominator to derive expression	3		
Q10. Triple brackets	3		
Q11. Quadratic sequences	3		
Q12. Area given in surd form	3		
Q13. Factorise, expand and simplify	5		
Q14. Factorise and solve quadratics	4		
Q15. Factorise and solve quadratics	3		
	I	l	


58

Q1. (a) Make t the subject of the formula 2(a + t) = 5t + 7

(b) Solve the simultaneous equations

$$3x - 4y = 8$$

 $9x + 5y = -1.5$

Q2. Here is a trapezium.

All measurements shown are in centimetres.

Work out the area of the trapezium.

Give your answer in cm² in the form $a\sqrt{5} + b$ where a and b are integers.

(3)

(1)

(2)

Q3. Make x the subject of the formula $y = \frac{x^2+9}{x^2-7}$

Q4. (a) Simplify
$$3y + 2x - 4 + 5x + 7$$
 (4)

(b) Factorise
$$2x^2 - 4x$$

(3)

(c) Expand and simplify 11 - 3(x + 2)

(d) Expand and simplify
$$(x-6)(3x+7)$$

Q5.
$$\frac{1+\sqrt{2}}{(3-\sqrt{2})^2}$$
 can be written in the form $a + b\sqrt{2}$

Find the value of *a* and the value of *b*.

(5)
Q6.
$$a = \sqrt{7} + \sqrt{c}$$
 and $b = \sqrt{63} + \sqrt{d}$ and where c and d are positive integers.
Given that $c: d = 1:9$ find, in its simplest form, the ratio $a: b$

Q7. Make x the subject of the formula $v = \frac{3x}{3x}$

$$x = \frac{1}{x+5}$$

(3) Q8. Rationalise the denominator of
$$\frac{(4+\sqrt{2})(4-\sqrt{2})}{\sqrt{7}}$$
 Give your answer in its simplest form.

(3) Q9. Show that
$$\frac{3+\sqrt{2}}{5+\sqrt{8}}$$
 can be written as $\frac{11-\sqrt{2}}{17}$

(3) Q10. Show that (x + 1)(x + 2)(x + 3) can be written in the form $ax^3 + bx^2 + cx + d$ where a, b, c and d are positive integers.

www.justmaths.co.uk

(2)

(2)

Q11. Here are the first 7 terms of a quadratic sequence.	(3)
3 6 11 18 27 38 51	
(a) Find an expression, in terms of <i>n</i> , for the <i>n</i> th term of this sequence.	
(b) Find the 50th term of this sequence.	(2)
Q12. The perimeter of a square is √120 cm. Work out the area of the square. Give your answer in its simplest form.	(1)
Q13. (a) Factorise $2ax - 2ay + bx - by$	(3)
(b) Expand and simplify $(n + 2)^2 + (n - 3)^2$	(2)
Q14. (a) (i) Factorise $x^2 - 12x + 27$	(3)
(ii) Solve the equation $x^2 - 12x + 27 = 0$	
(b) Factorise $y^2 - 100$	(3)
Q15. Solve, by factorising, the equation $8x^2 - 30x - 27 = 0$	(1)

www.justmaths.co.uk

(3)