

Countdown to your final Maths exam ... part 4 (2019)

Markscheme & Examiners Report

- Q1. No Examiner's Report available for this question
- Q2. No Examiner's Report available for this question
- Q3. Many students were able to use their calculator to work out the value of the calculation and get 2300000. These students scored at least one mark, but many of them were not then able to write the number in standard form, or perhaps failed to notice that this was the requested form of the answer. But it was also evident that a significant minority of students did not use a calculator. Common incorrect answers here were 23 × 10⁵ and 2.3 × 10¹². Few students wrote down the intermediate steps showing 264500000 and 1150. A common misconception was that the number of zeros equates to the index number resulting in 2.3 × 10⁵ as the most common incorrect answer.
- Q4.In part (a), many candidates did not know what was meant by 'factorise'. A popular incorrect answer was 15*t*. Some candidates did not appreciate that both the 3*t* and the 12 needed to be divided by 3. Common incorrect answer here was 3(*t* + 12) and 3(*t* + 9).
- In part (b), many candidates did not appreciate that to expand a bracket they needed to multiply both terms in the bracket by the number outside. Common incorrect expansions were 14x + 1 and 6x + 3. Some candidates attempted incorrectly to 'simplify' inside each brackets before expanding them, ie 7(2x + 1) became $7 \times 3x$ and 6(x + 3) became $6 \times 3x$. A significant number of candidates, having reached the correct expansion 14x + 7 + 6x + 18, did not then go on to simplify this correctly. Common incorrect answers were 14x + 15 and 45x (by 'simplifying' 20x + 25).
- Q5. Also a good discriminator, there were some completely correct solutions to this geometry question and where a solution was not complete, it was often possible for examiners to award partial credit to students who had made some progress.
- The most common error made was in the calculation of the size of angle *PTR*. Some students worked out the size of the angle *QRD* then stated that angle *PTR* was the same size. This was without foundation as there was no indication that the line *PT* was parallel to the line *QR*.
- Q6. No Examiner's Report available for this question
- Q7. No Examiner's Report available for this question
- Q8. No Examiner's Report available for this question
- Q9. No Examiner's Report available for this question

- Q10. Many failed to attempt this question, which is regrettable, since some of the diagram was accessible to all. The first mark was given to anyone who found a simple angle of many: this included some worked out from angles on a straight line or at a point. No reasoning was required: many chose to write on the diagram provided. However, it was important for candidates to identify which angles they were referring to in their working. A second angle could be worked out using properties of parallel lines, which then led to the required angle. There were a number of different routes of solution open to candidates, all of which could attract credit.
- Q11. A surprising number of candidates (9%) scored one mark in this question, either for correctly calculating the missing angles in the isosceles triangle *ABC* or for finding the alternate angle *CAE*. Two marks were obtained for obtaining both angles and this was achieved by 4% of candidates. The 10% of candidates that found the missing angle x scored 3 marks but only 0.6% of candidates could state the reasons correctly. Few candidates use the three letter notation to identify angles. Some candidates used Z angles in their explanation which is no longer acceptable for alternate angles.
- Q12. No Examiner's Report available for this question
- Q13. No Examiner's Report available for this question
- Q14. No Examiner's Report available for this question
- Q15. No Examiner's Report available for this question

<u>Mark Scheme</u>

Q1.

Question	Working	Answer	Mark	Notes			
(a)		3 in Q	B1	the figure 3 is correctly placed			
		6 in middle	B1	the figure 6 is correctly placed			
(b)	.e .	7	M1	for writing $7/a$ ($a \neq 11$, $a > 7$)			
		11		or $b/11$ ($b \neq 7$, $b < 11$) (ft)			
			A1	for 7/11 (cao or ft from their Venn diagram) oe			

Q2.

Paper 1MA1: 1F				
Question	Working	Answer		Notes
		$x^{2}+2x-3$	M1 A1	starts expansion: at least 3 terms correct with signs, or four terms correct ignoring signs for $x^{2}+2x-3$

Q3.

Question	Answer	Mark	Mark scheme	Additional guidance
	2.3 × 10 ⁶	M1	for 2.3×10^n where $n \neq 6$ or 23×10^5 or 2300000 or 2645000000 and 1150 seen	2300000 could be written as 2.3 million
		A1	cao	

Q4.

	Working	Answer	Mark	Notes
(a)		3(t + 4)	1	B1 for $3(t + 4)$ or $3 \times (t + 4)$ oe
(b)	14x +7 + 6x + 18	20x + 25	2	M1 for $7 \times 2x + 7 \times 1$ or $14x + 7$ or $6 \times x + 6 \times 3$ or $6x + 18$ A1 for $20x + 25$ (accept $5(4x + 5)$)

Q5.

Question	Working	Answer	Mark	Notes	
		88	4	M1 for $(APT =)$ 180 – (32 + 90) (= 58) M1 for $(PTR =)$ "58" M1 for 360 – ("58" + 124 + 90) A1 cao OR (line XY drawn through Q parallel to AB) M1 for $(QRD =)$ 180 – 124 (= 56) M1 for $(XQR =)$ "56" M1 for $(PQX =)$ 32 A1 cao	

Q6.

Question	Working	Answer	Notes	
а		<i>y</i> (<i>y</i> +27)	B1	
b		t ⁶	B1	
c		w ⁵	B1	

Q7.

Question	Working	Answer	Mark	Notes
(a)	French Spanish	Correct diagram	3	B1 13 and 20 in correct positions M1 43 - 20 (= 23) or 60 - 43 - 13 (= 4) A1 correct diagram
(b)		$\frac{4}{60}$	1	B1 $\frac{4}{60}$ oe or ft Venn diagram for $\frac{"4"}{60}$

Q8.

Question	Working	Answer	Mark	Notes
(a)		26730	B1	сао
(b)		7.04 × 10 ⁻²	B1	сао
(c)		1.5 × 10 ⁸	M1	for 150 000 000 or 1.5×10^n where $n \neq 8$
			A1	cao

Q9.

Question	Working	Answer	Mark	Notes
(a)		$2a^2 + 14a$	B1	cao
(b)		7(2b - 1)	B1	сао
(c)		13	M1	for correct expansion of the bracket, or for intention to divide both sides by 9 as the first step
			A1	cao
(d)		$12y^{5}$	B1	cao

010

Question	Working	Answer	Mark	Notes
	BFD = 42° GFB = 110° 110 - 42	68	3	M1 for EDC=42 or DHF= 180-110 (=70) M1 for 180 - 42 - 70 A1 cao OR M1 for BFD = 42° or BFH = 110° M1 for 110 - 42 A1 cao OR M1 for AFH = 180 - 110 (=70°) M1 for 180 - 70 - 42

Q11.

Question	Working	Answer	Mark	Notes
	Angle $ACB = 35^{\circ}$ (base angles of an isosceles triangle are equal) (angles in a triangle add up to 180) Angle $CAE = 35^{\circ}$ (alternate angles are equal) x = 360 - (100 + 90 + 35) = 135 (angles in a quadrilateral add up to 360°)	<mark>1</mark> 35	4	M1 for angle ACB = (180 – 110) ÷ 2 or 35 seen M1 for angle CAE = angle ACB or "35" (this could be marked on diagram) A1 x = 135 cao C1 (dep on M1) for alternate angles are equal or allied angles (co-interior angles) are supplementary (add to 180°) AND any one of • (base) or 2 angles of an isosceles triangle are equal oe • angles in a triangle (add up to) 180 • angles in a quadrilateral (add up to) 360° • angles in a pentagon (add up to) 540°

\sim	10	
(.)	1.)	
S.	12.	

Question	Working	ing Answer		Notes	
(a)		4x + 6y	M1 A1	for $4x$ or $6y$ for $4x + 6y$ or $2(2x + 3y)$	
(b)		5(2x-3)	B1	cao	
(c)		4	M1	for method to isolate terms in <i>p</i> on one side and constants on the other side	
			A1	cao	

Q13.

Paper 1M	A1: 1F			
Question	Working	Answer	Notes	
		152	M1	Start to method $ABD = 38^{\circ}$ and BAD or DBC or $DCB = 38^{\circ}$
			M1	<i>ADB</i> or <i>BDC</i> = $180 - 2 \times 38$ (= 104)
			A1	for 152 with working

Q14.

Paper 1MA1:3F				
Question	Working	Answer	Notes	
		Venn diagram	M1 for two overlapping and labelled ovals M1 for 2 and 6 in the intersection M1 for 5 and 7 in the universal set only C1 for a fully correct Venn Diagram	

Q15.

Qu	iestion	Working	Answer	Mark	Notes
			No with explanation	2	C1 for expansion of $(x + 5)^2$ with at least 3 terms correct or substitution of the same number into both expressions C1 No with $(x + 5)^2 = x^2 + 10x + 25$ or No with correct evaluation of both expressions